Задолго до того, как Леонардо да Винчи назвал совершенную пропорцию золотым сечением, его тезка и соотечественник, математик из Пизы Леонардо, больше известный как Фибоначчи («сын Боначчи»), написал книгу занимательных математических задач под названием «Книга об абаке» [17]. Благодаря этой книге Европа познакомилась с индийскими цифрами (которые в России называют арабскими), более удобными для счета, чем римские. И благодаря ей человечество уже 1202 году открыло для себя одну из самых удивительных последовательностей, лежащих в основе гармонии мира, -ряд Фибоначчи.

Решая задачу о годовом приплоде пары кроликов, которые размножаются каждый месяц и рождают по паре крольчат, начиная со второго месяца от рождения, Фибоначчи выстроил прогрессию увеличения поголовья кроликов (табл. 7).

Таблица 7. Решение задачи Фибоначчи

Месяц

0

1

2

3

4

5

6

7

8

9

10

11

12

и т.д.

Пары кроликов

0

1

1

2

3

5

8

13

21

34

55

39

144

и т.д.

Каждое число (начиная с третьего) этой последовательности равно сумме двух предыдущих: 2 + 3 = 5;3 + 5 = 8; 5 + 8 = 13; 8 + 13 = 21; 13 + 21 = 34 и т. д. Отношение смежных чисел ряда приближается к числу божественной пропорции ф = 0,618 (при делении единичного отрезка в пропорции золотого сечения получившийся больший отрезок равен 0,618, меньший 0,382). Так, 2:3 = 0,666; 3:5 = 0,6; 5:8 = 0,625; 8: 13 = 0,615; 13: 21 = 0,619; 21:

34 = 0,617, а 34: 55 = 0,618 и т. д.

Ряд Фибоначчи и иррациональное число ф обладают множеством удивительных свойств. Деление каждого из чисел ряда Фибоначчи на число, стоящее через одно, дает еще один «золотой коэффициент» - 0,382 (равное 1- ф ). Обратное отношение, то есть деление числа на предшествующее ему, приближается к числу 1,618 (равное 1 :<р). Можно и дальше продолжать ряд «золотых коэффициентов» ряда Фибоначчи, которые дают непрерывное деление отрезка прямой в божественной пропорции, когда меньший отрезок так относится к большему, как больший ко всему.

Золотые геометрические фигуры На золотом сечении базируются основные геометрические фигуры.

Прямоугольник, в котором длины сторон божественно пропорциональны, стали называть золотым прямоугольником. Он обладает множеством интересных свойств.

Если от него отрезать квадрат, то оставшаяся часть представляет собой золотой прямоугольник. Этот процесс можно продолжать до бесконечности. А если провести диагональ первого и второго прямоугольника, то точка их пересечения будет принадлежать всем получаемым золотым прямоугольникам. Точки, делящие стороны в божественной пропорции, лежат на закручивающейся внутрь логарифмической спирали - единственной спирали, которая не метает своей формы при изменении размеров (рис. 40а).


Рис. 40. Геометрические фигуры: а-золотой прямоугольник; б - золотой треугольник;

в - пентаграмма

Существует и золотой треугольник (рис. 406). Это равнобедренный треугольник, у которого отношение длины боковой стороны к длине основания составляет 1,618. В пентаграмме (рис. 40в) - пятилучевой звезде - каждая из пяти линий делит другую в отношении золотого сечения, а лучи звезды являются золотыми треугольниками. Внутри звезды находится правильный многоугольник, пересечение диагоналей которого дает еще одну звезду золотого сечения, и так до бесконечности.

Существует золотой кубоид - прямоугольный параллелепипед с ребрами, длины которых находятся в отношении 1,618:1:0,618.

Внутри священных фигур пифагорейцев - икосаэдра и додекаэдра - скрыто 3 золотых взаимно перпендикулярных симметрично пересекающихся прямоугольника. Вершины прямоугольников совпадают с вершинами икосаэдра и в то же время указывают на середины граней додекаэдра.

Леонардо да Винчи производил сечения стереометрического тела, образованного правильными пятиугольниками (структура на основе додекаэдра), и каждый раз получал прямоугольники с отношениями сторон в золотом делении. Поэтому он и назвал его золотым сечением.

Немецкий ученый физиолог Густав Фехнер изучал отношения людей к геометрическим фигурам, построенным на золотом сечении. Он разработал целый ряд тестов, в которых испытуемому предлагалось выбрать «милый его сердцу» прямоугольник из большого набора прямоугольников с различными соотношениями сторон или нарисовать самый «приятный» многоугольник и т. д. Оказалось, что большинство людей «испытывают симпатии» к золотым фигурам.