• плазменном;

• газообразном;

• жидком;

• твердом.

Твердые тела могут иметь кристаллическую или аморфную структуру. Частный случай аморфного состояния - стеклообразное. Комиссия по терминологии АН СССР дала такое определение стеклу: «Стеклом называются все аморфные тела, получаемые путем переохлаждения расплава независимо от химического состава и температурной области затвердения и обладающие в результате постепенного увеличения вязкости механическими свойствами твердых тел, причем процесс перехода из жидкого состояния в стеклообразное должен быть обратимым».

С точки зрения современных понятий различают термины «стекло» и «стеклообразное состояние». Так, М.М. Шульц и О.В. Мазурин дают следующее определение «стеклообразного состояния»: «Веществом в стеклообразном состоянии (стеклообразным веществом) называется твердое некристаллическое вещество, образовавшееся в результате охлаждения жидкости со скоростью, достаточной для предотвращения кристаллизации во время охлаждения». Согласно Н.В. Соломину, «стеклом называется материал, в основном состоящий из стеклообразного вещества». Таким образом, термин «стекло» следует считать техническим термином в отличие от научного термина «стеклообразное состояние». В стекле могут оказаться пузыри, мелкие кристаллики. В материале, в основном состоящем из стеклообразного вещества, может быть даже специально образовано очень большое число мельчайших кристалликов, делающих материал непрозрачным или придающих ему ту или иную окраску. Такой материал называют «молочным» стеклом, окрашенным стеклом и т.д.

1.2. Классификация стекол, их составы

По типу неорганических соединений различают следующие классы стекол: элементарные, металлические, оксидные, галогенидные, халькогенидные, сульфатные, нитратные, карбонатные, фосфатные и др.

Краткая характеристика этих стекол следующая.

Элементарные стекла способны образовывать лишь небольшое число элементов - сера (S), селен (Se), мышьяк (As), фосфор (Р), углерод (С). Стеклообразные серу и селен удается получить при быстром переохлаждении расплава; мышьяк - методом сублимации в вакууме; фосфор - при нагревании под давлением более 100 МПа; углерод - в результате длительного пиролиза органических смол. Промышленное значение находит стеклоуглерод, обладающий уникальными свойствами - он способен оставаться в твердом состоянии до 3700°С, имеет низкую плотность 1500 кг/м3, обладает высокой прочностью, электропроводностью, химически стоек.

Галогенидные стекла получают на основе стеклообразующего компонента BeFr Многокомпонентные составы фторобериллатных стекол содержат также фториды алюминия, кальция, магния, стронция и бария. Фторобериллатные стекла находят практическое применение благодаря высокой стойкости к действию жестких излучений, включая рентгеновские и у-л учи, агрессивных сред - фтор, фтористый водород.

Халькогенидные стекла получают в бескислородных системах типа Ge-As-X, Ge-Sb-X, Ge-P-X, где X—S, Se, Те. Они прозрачны в ИК-области спектра, обладают полупроводниковой проводимостью электронного типа, обнаруживают внутренний фотоэффект. Стекла применяются в телевизионных высокочувствительных камерах, в ЭВМ в качестве переключателей или элементов запоминающих устройств.


⇐ вернуться назад| |читать дальше ⇒